NASA Environmental Compatibility Research Workshop III

Scenarios for Aviation's Growth: Opportunities for Advanced Technology:

"Zero Emissions" Aircraft

Chris Snyder (NASA) July 7, 1998 Monterey, California

- Present Study Status and Results
- Compare Emissions from a "conventional" baseline versus alternative systems
- Background
 - Respond to some preliminary numbers from Waitz & Pannathur, MIT
 - Try to go into additional detail, address technology issues for promising concepts

zero-emission2.ppt CS/mjb 7-1-98

"Baseline" Aircraft Used for Studies

- Basis for Comparison: Advanced Aircraft Derived from NASA Scenario-Based Review (1997)
 - Max. take-off mass ≈ 344,000 lb
 - Typical operating empty mass ≈ 168,600 lb
 - Max. fuel capacity ≈ 92,550 lb kerosine
 - Takeoff thrust ≈ 54,900 lb per engine(2)
 - Cruise thrust ≈ 16,100 lb
 - Design range ≈ 6500 nmi
 - Passengers ≈ 325
 - Length ≈ 221 ft., Wingspan ≈ 194 ft.
 - Cruise L/D ≈ 23

- Concepts Included:
 - Hydrogen-fuel (liquid/cryogenic only)
 Fuselage resized to contain all fuel desired range
 - Methane-fuel (liquid/cryogenic only)
 - Nuclear Aircraft (H2 & hydrocarbon fuels)
 - Fuel Cell Powered Electric Aircraft
- Omitted:
 - Battery-Powered (considered too heavy Take-off power requirements too high)

- Hydrogen-Fueled Aircraft Assumptions
 - Put H₂ in fuselage (lengthen as necessary for cargo/pax)
 - Tank and insulation weight = 0.3 X H₂ weight
 - Insulation occupies 30% of possible tank volume
 - Use same gas turbine engine converted to use H₂
 - CO₂ production directly related to HC burned
 - NOx production assumed to be same as typical combustor, corrected by heating value of fuel

	Heat of Combustion BTU / Ibm	Density Lbm / ft ³	Energy Density BTU / ft ³
Liquid Hydrogen	49,900	4.4	219,560
Conventional Hydrocarbon (HC)	18,400	50	920,000

- Methane-Fueled Aircraft Assumptions
 - Put CH₄ in wing (since volume is available)
 - Tank and insulation weight = 0.05 X CH₄ weight
 - Insulation occupies 15% of possible tank volume
 - Use same gas turbine engine converted to use CH₄
 - CO₂ production directly related to CH₄ burned
 - NOx production assumed to be 75% of comparable HCfueled combustor

	Heat of Combustion BTU / Ibm	Density Lbm / ft ³	Energy Density BTU / ft ³
Liquid Methane (CH₄)	21,100	26.6	561,260
Conventional Hydrocarbon (HC)	18,400	50	920,000

Nuclear Aircraft

- Hybrid system Nuclear reactor supplied heat energy to "conventional" engine at cruise. Fuel used for takeoff/climb and approach/landing (Reactor is cool/safe)
- No CO₂ produced during reactor operation. NOx production assumed same as HC/CH₄ turbofan engine and if no NOx produced during cruise
- NERVA technology assumed, with reactor well shielded to allow "standard" passenger/work environment (low exposure rates) (based on detailed 1960's system studies – no benefit in new technology to reduce shield weight)
- Nuclear reactor designed for long life between "overhauls" (10,000 hours use), heavy, but fairly compact
- Aircraft range almost infinite

Fuel-Cell

- Fuel Cell is used to generate power for electric motors / (propellers/fans) using hydrogen fuel
- Assume Proton Exchange Membrane (PEM) technology being spearheaded by the automotive industry (use in 5-10 years)
- Major weight is fuel cell system @ 0.25 kw/lb (about ten times the weight of the equivalent advanced turbofan system). Fuel cells assumed to weight 4-10 times less than present SOA.
- Advanced (super-conducting) electric motor weighs about 1/2 of advanced turbofans at same thrust

Results

(at constant 6500 nmi range)

- Liquid hydrogen
 - Bigger but lighter aircraft
 - Operational and engineering challenges to H₂ aircraft (H2 in fuselage)
 - Method of H₂ production (present method very pollutive)
- Liquid Methane
 - In-between kerosene and Hydrogen.
 - Modest reduction in CO₂ and NOx
- Nuclear-powered
 - Weight of reactor dependent on shielding requirements
 - CO₂ depends on fuel (but greatly reduced). NOx production probably substantially less or about equal to base (based on study assumptions)
 - Safety and acceptance difficult
- Fuel cell powered
 - True zero-emissions (depending on source of H2)
 - H2 makes it bigger; fuel cell technology a heavier aircraft

Future Work

- Fuel Cells
 - Heat load / rejection system weights
 - Scaling / sub system weights
 - Look at power-handling equipment required, integrate with fuel control to eliminate possible unnecessary items
 - Look at physical integration in aircraft structure